SHOCK WAVES IN CONDENSED MEDIA 15

change is small and the shock can be treated as a simple wave to which either
eq. (35) or (36) applies. In this approximation the interactions of shock waves
and rarefactions can be calculated from eqs. (25) and (26).

3. — Elementary wave interactions.

Equations (32), (34), (35) and (36) uniquely define and limit the values
of particle velocity, , which can be achieved by simple shock or rarefaction
from a given state (p,, V,, %,). This limitation on states which can be reached
in a single wave transition supplies a powerful tool for thinking about and
calculating the fields of high-amplitude waves. The problem is transformed
into a «hodograph » plane in which the variables are (u,p), (%,1), (r,s) or
some equivalent set. We shall use u, p here because of continuity conditions
on % and p at an interface or boundary. The significance of this choice will
appear later.

Various useful representations of a shock and of a rarefaction are shown
in Fig. 4. In 4 a) is a cross-section of a half-space to which a pressure p,
was applied at 1= 0 and released at {=1,. The pressure profile at this par-
ticular #>1, is shown in 4b). It consists of a forward-facing shock, desig-
nated &, a region of uniform pressure p, and particle velocity #,, and a
rarefaction #Z,. The notations & and £ are introduced here to denote shock
and rarefaction waves, respectively. Forward-facing waves are denoted by
the subscript « -+ », backward-facing by «—». In Fig. 4 ¢) the flow is shown
in the (w,?) plane. Region I is the uniform initial state (p,, Vo, %,) with
%> 0. The shock front, %, has constant slope until the following rarefaction
overtakes it, reducing its amplitude and velocity. Region II is the uniform
state (p,, #,, V;) behind the shock. Region III is the rarefaction %, in which
pressure and particle velocity are diminishing. Region IV is again at the
ambient pressure p, but volume and particle velocity now differ from ¥,
and u,. The path OAB is the trace of the half-space surface, sometimes called
the «piston path», Z. The dashed curve is the path of a single particle or
mass element traversed successively by &, and Z,. Figure 4 d) shows the
wave process in the (p, V) plane. The initial shock compression is along the
Rayleigh line to the state B on the Hugoniot. The rarefaction, assumed to
be isentropic, expands the material along the dashed isentrope to the final
state C(V",, Diss u",). In Fig. 4 ¢) the process is shown in the (p, %) plane. The
straight line AB with slope dp/du= g,(D —u,) is the image of the Rayleigh
line. The compressed state B lies on the image of the Hugoniot curve and
the dashed curve BC is the image of the isentrope of Fig. 4 d). Because the
shock process is entropic and because most materials have positive thermal
expansion coefficients, the final state (u,, p,) is normally to the left of (u,, p,)
for forward-facing waves.




N -
-

RS
Py == D, L
4 A u) u
d) e)

0

Fig. 4. — Forward-facing rarefaction overtaking a shock. @) planes of constant phase
in half-space; b) pressure profile, t>1%,; ¢) (x-t) diagram; d) (p-V) diagram;
e) (p u)-plane.




